PageRank, memiliki konsep dasar yang sama dengan link popularity, tetapi tidak hanya memperhitungkan “jumlah” inbound dan outbound link. Pendekatan yang digunakan adalah sebuah halaman akan diangap penting jika halaman lain memiliki link ke halaman tersebut. Sebuah halaman juga akan menjadi semakin penting jika halaman lain yang memiliki rangking (pagerank) tinggi mengacu ke halaman tersebut.
Dengan pendekatan yang digunakan PageRank, proses terjadi secara rekursif dimana sebuah rangking akan ditentukan oleh rangking dari halaman web yang rangkingnya ditentukan oleh rangking halaman web lain yang memiliki link ke halaman tersebut. Proses ini berarti suatu proses yang berulang (rekursif). Di dunia maya, ada jutaan bahkan milyaran halaman web. Oleh karena itu sebuah rangking halaman web ditentukan dari struktur link dari keseluruhan halaman web yang ada di dunia maya. Sebuah proses yang sangat besar dan komplek.
Mau tahu algoritma page rank?
Dari pendekatan yang sudah dijelaskan pada artikel konsep pagerank, Lawrence Page and Sergey Brin membuat algoritma pagerank seperti di bawah :
Algoritma awal PR(A) = (1-d) + d ( ( PR(T1) / C(T1) ) + … + ( PR(Tn) / C(Tn) ) )
Salah satu alogtima lain yang dipublikasikan PR(A) = (1-d) / N + d ( ( PR(T1) / C(T1) ) + … + ( PR(Tn) / C(Tn) ) )
* PR(A) adalah Pagerank halaman A
* PR(T1) adalah Pagerank halaman T1 yang mengacu ke halaman A
* C(T1) adalah jumlah link keluar (outbound link) pada halaman T1
* d adalah damping factor yang bisa diberi antara 0 dan 1.
* N adalah jumlah keseluruhan halaman web (yang terindex oleh google)
Random surfer model merupakan pendekatan yang menggambarkan bagaimana sesungguhnya yang dilakukan seorang pengunjung di depan sebuah halaman web. Ini berarti peluang atau probabilitas seorang user mengklik sebuah link sebanding dengan jumlah link yang ada pada halaman tersebut. Pendekatan ini yang digunakan pagerank sehingga pagerank dari link masuk (inbound link) tidak langsung didistribusikan ke halaman yang dituju, melainkan dibagi dengan jumlah link keluar (outbound link) yang ada pada halaman tersebut. Rasanya semua juga menganggap ini adil. Karena bisa anda bayangkan apa jadinya jika sebuah halaman dengan rangking tinggi mengacu ke banyak halaman, mungkin teknologi pagerank tidak akan relevan digunakan.
Metode ini juga memiliki pendekatan bahwa seorang user tidak akan mengklik semua link yang ada pada sebuah halaman web. Oleh karena itu pagerank menggunakan damping factor untuk mereduksi nilai pagerank yang didistribusikan sebuah halaman ke halaman lain. Probabilitas seorang user terus mengkilk semua link yang ada pada sebuah halaman ditentukan oleh nilai damping factor (d) yang bernilai antara 0 sampai 1. Nilai damping factor yang tinggi berarti seorang user akan lebih banyak mengklik sebuah halaman sampai dia berpindah ke halaman lain. Setelah user berpindah halaman maka probabilitas diimplemntasikan ke dalam algoritma pagerank sebagai konstanta (1-d) . Dengan mengeluarkan variable inbound link (link masuk), maka kemungkinan seorang user untuk berpindah ke halaman lain adalah (1-d), hal ini akan membuat pagerank selalu berada pada nilai minimum.
Dalam algoritma pagerank yang lain, terdapat nilai N yang merupkan jumlah keseluruhan halaman web, jadi seorang user memiliki probabilitas mengunjungi sebuah halaman dibagi dengan total jumlah halaman yang ada. Sebaagai contoh, jika sebuah halaman memiliki pagerank 2 dan total halaman web 100 maka dalam seratus kali kunjungan dia mengunjungi halaman itu sebanyak 2 kali (catatan, ini adalah probabilitas).
Aduuh.. panjaaaaang banget penjelasannya. Aku sendiri belum baca semua lho, hi..hi.hi. :P ini cuma asal kopi/paste dari om Wiki (panggilan akrab Wikipedia)
0 comments:
Post a Comment